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Model-Based Robot Learning

Christopher G. Atkeson, Eric W. Aboaf,
Joseph McIntyre and David J. Reinkensmeyer

Model-Based Learning Algorithm Struc-

1 Introduction ture

An important component of human motor skill is the abil- The model-based learning algorithms described here aU
ity to improve performance by practicing a task. have the same form. Commands are refined on the basis
Commands are refined on the basis of performance er- of performance errors. A command is applied to the con-
rors. It is often suggested that such learning reduces the trolled system (Figure IA). Performance errors may result
need for an accurate internal model, a model of the me- from errors in the command. A model of the inverse of
chanical plant in the control system (see Arimoto, 1984b; the controlled system is used to estimate the errors in the
Wang and Horowitz, 1985; and Harokopos, 1986 for ex- command based on the measured performance or output
amples). This is not the case. Internal models play an errors (Figure IB). If the inverse model of the controlled
important role in generating command corrections from system is perfect, the command errors would be correctly
performance errors. As an internal model is made more estimated and completely eliminated after one attempt at
accurate, learning efficiency is improved, as is initial per- performing the task. (Of course, if a perfect model of the
formance. controlled system is available then the initial command

This paper will show, in a series of examples, how would also have been perfect). Perfect knowledge of the
internal models can be used as learning operators. The controlled system is not usually available, and the model
examples are 1) positioning a limb at a visual target, 2) of the inverse of the controlled system will be incorrect.
throwing a ball at a target, and 3) following a defined Due to the modeling errors, the command correction will
trajectory. The essence of the model-based learning algo- be incomplete, and learning will be an iterative process of
rithms used to improve performance on these tasks is that refining the command.
internal models are used to transform performance errors There are three steps to the learning algorithms: com-
into command corrections. mand initialization, execution, and modification. The ini-

The type of learning described in this paper - refining tial command is generated by applying the inverse model
commands on the basis of practice - complements many of the controlled system to the desired performance. Dur-
other types of adaptive processes. Feedback controller de- ing execution, a command is applied to the system and
signs can be improved by adaptive control algorithms. In- the actual performance is monitored. The command cor-
ternal models can be incrementally improved using system rection is calculated by applying the inverse model to the
identification techniques. Trajectories can be optimized performance errors. The refined command is now exe-
for particular tasks. Robot plans and programs can be cuted. The cycle of command execution and modification
debugged as errors are discovered during execution. This is repeated until desired performance is achieved.
paper focuses on improving execution of a given task plan
by refining the commands given to the robot.
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A Command Controlled Performance

B Command Inverse of Performance

Errors Controlled System Errors

Figure 1: The inverse of the controlled system is used to estimate command errors from performance errors.

2 A Kinematic Example of the actual and desired performances using the true

The task of positioning the limb at a visual target will be system inerse:

used to provide a specific example of how model-based 60 ° = 0 - " = L-1 (xo) - L-'(xd) (4)
learning works. A robot arm and a target are viewed
by a vision system (Figure 2). The robot arm servos As we do not have perfect knowledge of the true system
to a commanded set of joint angles, 0, and the vis;on inverse, we must use a model of the system inverse to
system measures the tip position, x, in vision system estimate the command error:
coordinates. The controlled system in this cae trans-
forms commanded joint angles into a measured tip posi- 6 -0 = L- (x ° ) - L-,(xd) (5)
tion (Figure IA): x = L(i) The command is updated by simply subtracting the esti-

mate of the command error from the previous command:

The forward kinematics, LO, is in general a nonlinear
transformation. For the purposes of this example we #I = g0 90 (6)
will assume there are no singularities or redundancies to
resolve in the field of view of the vision system. For each If the model of the system inverse was perfect the
desired tip position there is one and only one appropriate command error would be estimated correctly and com-
set of joint angles. pletely eliminated on the next attempt. However, a

A model of the inverse kinematics is used to transform model is rarely perfect, so command correctior ust be
the desired tip position, xi, into an initial joint angle an iterative process of estimating a command error using
command, 90, in the command initialization stage: an imperfect model, removing the estimated command

error, applying the refined command, and using the re-
g0 = (xd) (2) suiting performance error and the model to estimate re-

maining errors in the command. Equations (3), (5), and
A caret (^) is used to indicate a model or an estimate of (6) can be indexed with i to indicate that they are ap-
a quantity. The initial joint angle command is applied plied on each practice attempt, reflecting the iterative
in the first execution stage, and the corresponding tip nature of the algorithm:
position is measured:

1. Command initialisation:x°= L(9°) (3)

The true system, LO, and its inverse are unknown, and to = Li 1(X) (7)

only imperfect models are available. Due to modeling 2. Command execution:
errors, the actual tip position, xO, will not match the
desired tip position, xd. x' = L(9') (8)

At this point we must decide how to transform the
measured tip position error into a correction to the et 3. Command error estimation:
of commanded joint angles. Performance errors must be
mapped into command corrections. The same model of = P-(x') - -Sxi) (9)
the inverse kinematics that was used to generate the ini-
tial command, L-s0, will be used to estimate the com- 4. Command modification:
mand error (Figure IB).

The command error, 69, is the difference between 9 = i _ -) (10)
the currently commanded joint angles, 9o, and the (un-
known) correct set of joint angles, which will be indicated Steps 2, 3, and 4 are repeated until satisfactory
as '. The command error can be computed in terms performance is achieved.
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vision system (15)

If j-' is a correct inverse of J the command error will
be completely corrected after one attempt, in the linear
case. The command error 60 will decrease when all of
the eigenvalues of the matrix (I _-J-j) are less than one
in absolute value, with the rate of decrease determined

9 target xi by the magnitude of the eigenvalues. If the magnitude of
tip position x any eigenvalue is greater than one, the learning process

will be unstable and performance degraded rather than
improved by learning. The magnitude of the eigenvalues
of (I - -IJ) depend on hnw accurately j - 1 inverts J,
and thus the convergence rate of the learning algorithm

4-joint angles 0 depends on how closely the learning operator inverts the
Figure 2: A robot arm and a target are viewed by a controlled system.
vision system.

Input vs. output disturbance estimation

Convergence Although our performance errors are due to errors in
modeling the controlled system, the model-based learn-The quality of the inverse model used as the learning ing algorithm was derived by assuming that an unknown

operator determines how fast model-based learning con- error was added to the command. In the kinematic tip
verges. Fixed point theory can be used to analyze the positioning example a constant command disturbance
general nonlinear case (Wang 1984, Wang and Horowitz would correspond to constant joint angle offsets added
1985). A learning algorithm can be viewed as a map- to the commanded joint angles. The learning algorithm
ping of commands on the ith attempt to commands on just described can be viewed as an iterative procedure. the next attempt: to estimate a command disturbance.

I+1 F(11) An alternative version of the model-based learning al-

gorithm is suggested by assuming that the major source
The previously described algorithm can be put into this of errors are output (performance) disturbances rather
form by substituting equation (8) into (9) and (9) into than input (command) disturbances. In the kinematic
(10). The model-based learning algorithm modifies the example just presented, the camera measuring tip posi-
ith command by adding a correction based on the per- tion could have an unknown offset, A. This offset could
formance error transformed by the inverse model: initially be assumed to be zero, and after each position-

ing attempt an estimate of the offset could be refined by
+-- - (L-L(e')) - L-(xj)) (12) subtracting the tip position error:

Note that when the desired performance, xd, is achieved A = A'&-I - (xi - I - Xd) (16)
using the correct command, D", then L(#) = xj and
equation (12) reduces to the fixed point 9 1 

-0 -= ". The estimated output offset would be added to the de-
We can ask whether this fixed point is stable by sired tip position when the next joint angle command

analyzing a linearization of equation (12) at the point was computed:
(O,x) = ( 9",x). For a small perturbation 60 from the 0 = L-'(xd + A) (17)
fixed point,

Equations (16) and (17) replace equations (9) and (10) in
L(" + 60) = xd + J($")bf (13) the input disturbance version of the model-based learn-

where J is the Jacobean matrix of derivatives of LO. ing algorithm to form the output disturbance version.

Similarly, for a small perturbation 6x from the fixed Representing possible modeling errors as either in-

point, put or output errors is a modeling decision that depends
on the assumed source of the modeling errors. In the

(xd + 6x) = L-(xd) + J-'(xd)bx (14) output disturbance version of the model-based learning
algorithm, as in the input disturbance version, the per-

where J- is the Jacobean matrix for the inverse model formance error is mapped through an inverse model of
L-0. If on the ith trial the command is perturbed the controlled system to calculate a command correction.
from 0 by 60' so that 9' = 0" + 60, the error in the The output disturbance model-based learning algorithm
next command, 60 '+1 = *'+i - 9., can be computed by has similar convergence properties as the input distur-
substituting equations (13) and (14) into equation (12): bance algorithm.
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vision system

ball trajectory

0

/ "'. robot trajectory

target plateI
link 3 of robot arm

Figure 3: The throwing task.

3 Learning to Throw
a force sensor on which the target plate was mounted.

Model-based learning can be used to improve perfor- This signal was used to choose video frames to be stored
mance on a complete task, in addition to improving po- for later analysis. After the throw, the location of the
sitioning. As an example of task leyl learning, a robot bail on the target plate was manually measured from the

arm was programmed to throw balls at a target. The appropriate video frame.
robot throwing accuracy improved with practice. The initial release velocity command was calculated

Figure 3 illustrates the apparatus used in the throw- by measuring the distance to the target and using a sim-
ing experiments. The target was at the center of a large pie ballistics model, incorporating only gravity, to pre-

metal plate, which was placed approximately 5 meters dict the required light trajectory given the assumed re-

from the base of the robot. For this throwing task only lease position and initial direction of ball flight. The cor-
the height of the ball when it hit the target plate was responding trajectory duration was computed and the
monitored and improved by a learning algorithm, calculated trajectory executed. On the first throw the

The last link of a three joint direct drive arm was ball hit the target plate 28cm above the target. The
used as a catapult to throw a ball. The robot was po- model-based learning algorithm based on estimating an
sitioned so that the last link of the arm rotated in a output offset (equations (16) and (17)) was used to im-
vertical plane. The last joint was servoed to a fifth or- prove performance on the throwing task. This output

der polynomial trajectory that began at rest at 225° and offset learning algorithm corresponds to our intuition
ended at rest at 45 ° . A 4cm diameter rubber ball was that we should aim lower if we are hitting too high, and
placed onto a 3.5cm diameter hole at the end of the last vice versa. The role of the internal model is to calcu-
link. The ball left the hole as the robot arm decelerated late how much the aim should be changed. The hal-
during the throw. No release mechanism was used. The listics model used to generate initial performance was
release position of the ball was assumed to be when the also used to calculate the appropriate release velocity as
last link was at 135 ° . The distance the ball was thrown the aim was offset by the estimated disturbance amount.
was controlled by changing the duration of the throw- The open squares in Figure 4 show the throwing perfor-
ing movement, which changed the release velocity. A mance during model-based learning. In this particular
shorter duration and therefore faster movement threw experiment the ball hit the target on the eighth throw.
the ball higher and further, and a longer duration move- The open triangles in Figure 4 indicate the perfor-
ment threw the ball lower and closer. mance of a model-based learning algorithm that improves

A video camera was used to record where the ball hit the model as well as refining the command. This algo-
the target plate. The impact of the ball was sensed by rithm will be discussed in a later paper.
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30
C During command execution the applied command is

20 the sum of the feedforward command, rff, and the out-
put of the feedback controller, rfb:a

10 r'(t) = Ti ft0 + rib W (20)

a The total applied command, r, is used as the basis

A a for the next feedforward command. As described in the
previous sections, the command error is estimated using
the model of the robot inverse dynamics (as in equation

- * ,,,,, (9)):
0 1 2 3 4 5 6 7 8

TOa i'(t) = k-((t),h(t),j'()) -

Figure 4: Performance of the model-based learning algo- (21)
rithm on a throwing task. and the next feedforward command is the modified LotW1

command (as in equation (10)):

•ilt = ,'(t) - i(t) (22)

4 Trajectory Learning
Other Approaches to Trajectory Learn-

Trajectory execution of a robot can be improved using a ing
model-based learning algorithm (Atkeson and McIntyre
1986a, 1986b). A model of the robot inverse dynamics is Recent work in a number of laboratories has focused on
used as the learning operator that transforms traectory how to refine feedforward commands for repetitive move-
following errors into feedforward command corrections. ments on the basis of previous movement errors. Work
This form of learning is useful for refining repetitive mo- on repeated trajectory learning includes (Arimoto et al
tions, and can also be used to refine groups of similar mo- 1984, 1985; Casalino & Gambardella 1986; Craig 1984;
tions. Model-based trajectory learning was implemented Furatta & Yamakita 1986; Hara et l 1985; Harokopos
on the MIT Serial Link Direct Drive Arm and greatly 1986; Mita & Kato 1985; Morita 1986; Togai & Yamano
reduced trajectory following errors in a small number of 1986; Uchiyama 1978; Wang 1984; Wang & Horowitz
practice movements. 1985). These papers discuss only linear learning oper-

The robot model used an the learning operator in ators and emphasize the stability of the proposed algo-
the trajectory learning experiments was identified from rithms. There has been little work emphasizing perfor-
movements of the MIT Serial Link Direct Drive Robot mance, i.e. the convergence rate of the algorithm. Simu-
Arm (Atkeson, An, and Hollerbach 1986). The dynamics lations of several of these algorithms have revealed very
of this direct drive robot arm are dominated by rigid slow convergence and large sensitivity to disturbances
body dynamics, so a Newton-Euler model structure was and sensor and actuator noise (C. G. Atkeson, unpub-
used. The Newton-Euler rigid body dynamics equations lished results).
for a robot can be written as

= (9,Gb) =(D) . +D. C() .9+ g(D) (18) An Implementation of the Trajectory
Learning Algorithm

where 0(t) is the desired trajectory of the joint angles, The model-based trajectory learning algorithm has been
r(t) is the vector of required torques to achieve the de- implemented on the MIT Serial Link Direct Drive Arm
sired trajectory, I($) is the inertia matrix of the arm, (Atkeson and McIntyre 1986a, 1986b). This three joint
C(8) is the Coriolis and centripetal force tensor, and arm is described in (Atkeson, An, and Hollerbach 1986).
g(D) is the gravitational force vector (Hollerbach, 1984). To explore the effectiveness of the model-based trajec-
For other types of robots it is argued that additional tory learning algorithm we will present results on learn-
sources of dynamics are important (Goor, 1985; Good, ing a particular trajectory.
Sweet, and Strobel, 1985). In these cases we can still The Test Trajectory: All three joints of the Direct
model the robot dynamics and invert the model. Drive Arm were commanded to follow a fifth order poly-

As before, there are several stages of the algorithm. nomial trajectory with zero initial and final velocities and
The initial feedforward command is generated by ap- accelerations and a 1.5 second duration. Figure 5 shows
plying the model of the robot inverse dynamics to the the shape of the trajectory for each joint, and Table 1
desired trajectory (as in equation (7)): gives the initial and final joint positions, the peak joint

rof(t) = A-' (04(t),DA(t), (t)) (19) velocities, and the peak joint accelerations.
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Position used in the learning process. We filtered the references

used by the learning operator with the same filter used
on the data. It was also necessary to correct for incon-
sistencies between the velocity sensors and the position
measurements, which was done by adjusting the position

0.5 secoCKIS reference to the feedback controller until the integrated

Velocity velocity error matched the position error.
Final Trajectory Performance: The robot exe-

cuted two additional training movements which are not
shown, and its performance on the fourth attempt of the
test trajectory was assessed. Figure 6B shows the mod-
ified feedforward commands used on the fourth move-

Acceleration ment, and should be compared with the predicted tor-
ques shown in Figure 6A. Figure 7B shows the velocity

errors for the fourth movement, and should be compared
with the initial novement velocity errors in Figure 7A.
There has been a substantial reduction in trajectory fol-

Figure 5: The test trajectory. lowing error after only three practice movements.

Initial Final Peak Peak 5 Issues For Further Research
Position Position Velocity Acceleration

Joint radians radians radians/s radians/s 2  Some of the questions that warrant further research in-

1 0.5 4.5 5.0 ±10.3 clude the effect of modeling errors and non-repeatable
2 5.0 1.0 -5.0 ±10.3 disturbances on convergence, and learning of non-repeti-
3 4.0 -0.5 -5.6 ±11.5 tive tasks.

Table 1: Test trajectory parameters. As discussed previously, the convergence of model-
based learning algorithms depends on the quality of the
model. Accurate models support efficient learning. Inac-
curate models may cause learning algorithms to degrade

The Feedback Controller: An independent digital performance rather than improve it.
feedback controller was implemented for each joint and Reducing or filtering the estimated command correc-
was not modified during learning. tion will make model-based learning more robust to mod-

Initialization Of The Feedforward Command: eling errors. Convergence will be slowed, however. Fur-
The initial feedforward torques were generated from a ther research is required into the appropriate tradeoff
rigid body dynamics model. The model and the estima- between handling modeling errors and fast convergence.
tion of its parameters are described in (Atkeson, An, and Filtering of the model-based command update also plays
Hollerbach, 1986). The calculated feedforward torques an important role in reducing the effect of non-repeatable
are shown in Figure 6A. disturbances.

Initial Trajectory Performance: As an index of If intermediate sensory signals are available, then
trajectory following performance the velocity errors (the breaking the control system into modules and having
difference between the actual joint velocity and the de- each module learn independently may improve learning
sired joint velocity) for the first movement are shown in performance. We plan to explore this issue in the throw-
Figure 7A. We have plotted the raw velocity error data ing task, If measurements are available of when and
to give an idea of the relative size of the trajectory errors where the ball is released, then independent models of
and sensor noise. the throwing motion and the ball flight characteristics

Calculating Acceleration and Filtering: In or- can be made. These independent models can be used to
der to use the rigid body inverse dynamics model to com- choose an appropriate release velocity separately from
pute joint torques it was necessary to compute the joint refining the trajectory that attains that release velocity.
accelerations. Joint positions and velocities were mea- It is possible to modify models as well as commands
sured directly. A digital differentiating filter combined during learning. In the examples presented in this pa-
with an 8Hz low pass filter was applied to the velocity per the same models were used repeatedly even after it
data to estimate accelerations, became clear during learning that the models had large

To reject noise and non-repeatable disturbances and errors. We have explored some methods of model refine- W
to compensate for high frequency unmodelled dynam- ment during practice. The open triangles of Figure 4
ics it was necessary to filter the trajectory errors and show the faster convergence of a model-based learning
controller output. In this implementation we applied algorithm that improves the model as well as the corn-
low pass digital filters with an 8Hz cutoff to the data mand.
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Figure 7: Velocity Errors
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The model-based learning algorithms are ideally suit- Arimoto, S., S. Kawamura, F. Mlyasakl, and S.

ed to refining repetitive commands for the same tasks. Tamaki, 'Learning Control Theory for Dynamical

The learning algorithms can also be applied to refining Systems*, Proc. 24th Conf. on Decision and Control (Fort

commands for different tasks by assuming that similar Lauderdale, Florida, Dec. 11-13, 1985).
Atkeson, C. G., C. An, and J. M. Hollerbach,

command errors will be made on similar tasks. An es- "Estimation of Inertial Parameters of Manipulator Loads

timate of the command error on one task will be useful and Links', International Journal of Robotics Research 5
for improving the command for other tasks that share (1986) 101-119.

features with the original task. Atkeson, C. G. and J. McIntyre, 'Robot Trajectory
Learning Through Practice', IEEE CofL on Robotics and
Automation (San Francisco, CA, April 7 -10, 1986a).

6 Conclusion Atkeson, C. C. and J. McIntyre, 'Applications of
Adaptive Feedforward Control in Robotics', Proc. 2nd IFAC
Workshop on Adaptive Systems in Control and Signal

The main message of this paper is that models play an Processing (Lund, Sweden, July 1-3, 1986b).
important role in learning from practice. Better models Casalino, G. and L. Gambardella, 'Learning of
lead to faster correction of command errors. The incor- Movements in Robotic Manipulators', Proc. 1986 IEEE

poration of learning in a control system is not a license International Conference on Robotics and Automation (San

to do a poor modeling job of the controlled system. The Francisco, CA, April 7-10, 1986a) pp. 572-578.
Craig, J. J., 'Adaptive Control of Manipulators Through

benefits of accurate modeling are better performance in Repeated Trials', Proc. American Control Conference (San
all aspects of control, while the risks of inadequate mod- Diego, June 6-8, 1984) pp. 156-1574.
eling are poor learning performance or even degradation Furuta, K. and M. Yamakita, 'Iterative Generation of

of performance with practice. Optimal Input of a Manipulator', Proc. 1986 IEEE
International Confereace on Robotics and Automation (San

The approach to robot learning presented here i Francisco, CA, April 7-10, 1986) pp. 579-584.
based on explicit modeling of the robot and the task Good, M.C., Sweet, L.M., and Strobel, K.L.,
being performed. An inverse model of the task is used 'Dynamic models for control system design of integrated
as the learning operator that processes the errors. Such robot and drive systems', ASME J. Dynamic Systems,

model-based command refinement algorithms usefully Me&&., Control, 107 (1985) 53-59.

complement other approaches to adaptive control. Goor, R.M., "A new approach to robot control", Proc.
American Control Conf (Boston, June 19-21, 1985) pp.

Studying model-based learning algorithms serves two S85-389.
purposes: 1) to improve robot performance, and 2) to Hara, S., T. Omata, and M. Nakano, 'Synthesis of
increase our u.-._zrtanding of tha role of pradice and Repetitive Control Systems and its Application', Proc. 24th

internal models in human motor learning. Con. on Decision and Control (Fort Lauderdale, Florida,
Dec. 11-13, 1985).
Harokopos, E. G., "Optimal Learning Control of
Mechanical Manipulators in Repetitive Motions', Proc. 1986
IEEE International Conference on Robotics and Automation
(San Francisco, CA, April 7-10, 1966) pp. 396-401.
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